Improving clangd
document open time
with preamble caching

Alper Yoney

Dmitry Polukhin

lvan Murashko

Kugan Vivekanandarajah



Challenges

Huge monorepo with complex C++ files, many of them take more than a
minute to compile

Bad developer experience in IDE because clangd is not ready for along time preamble

Headers combined can be millions lines of code but source itself is usually

much smaller so clangd spends most of its time compiling headers

Precompiled headers (PCH) could help but cannot in this case because

clangd uses them internally to speed up re-compilation when the user

modifies a file
your actual
cpp file

~500LOC



Use Implicit C++ Modules as PCH Substitution

Solution: generate C++ implicit modulemap and inject into compilation database (CDB) for clangd

Dramatically speeds up file reopening time in clangd
On the example file with 2MLOC: 120+ sec.-> ~3s
Overall median clangd document open time improvements: more than 3Xin our case



Use Background Index for Prewarming Caches

e Naturally developers reopen only 20-30% of files in clangd so even if we speed up these files 20X, it
won't give a lot

e Cache prewarmingis required

e Clangd compiles all files from CDB once for building background index, usually it doesn’'t speedup
file opening later because nothing is reused between these compilations

e Withimplicit modules in our setup, modules generated during background index are reusable on
opening



Async Dynamic Indexing in Clangd

Initial speedup of file reopening was “only” 2-3X
Clangd builds dynamic index for the preamble and it causes visiting every node in AST and full
deserialization that is slow

e Dynamicindex can be built asynchronously in separate thread - see D148088 (implemented in
collaboration with clangd community, special thanks to Kadir Cetinkaya and Sam McCall)

e Asyncdynamic index alone gives 20-30% document open time improvement even without implicit
modules - already enabled in clang-17 by default and available to everybody

e Withimplicit modules speedup of document reopen is about 20X in P50


https://reviews.llvm.org/D148088

Next Steps

e Implement the preamble caching mechanism in clangd in upstream
e Produce preamble during background indexing
e Addoptions to control caching



Backup: Injected Compiler Options

-fmodules - enable modules

-fno-implicit-module-maps - don’t use implicit module maps because we resolve everything manually
-fmodule-map-file - generated module map for all headers that exports everything

-fmodules-cache-path - USe separate path to the cache to control size and don'’t interfere with build modules
-fmodules-validate-input-files-content - Check module invalidation by content hash instead of file timestamp
-Wno-module-import-in-extern-c - help with extern “C” in headers

-Wno-error - Warnings in headers shouldn't break module compilation

-Xclang -fallow-pcm-with-compiler-errors - produce serialized AST even in case of compilation errors in headers



