
Improving clangd 
document open time 
with preamble caching

Alper Yoney
Dmitry Polukhin
Ivan Murashko
Kugan Vivekanandarajah



Challenges

● Huge monorepo with complex C++ files, many of them take more than a 

minute to compile

● Bad developer experience in IDE because clangd is not ready for a long time

● Headers combined can be millions lines of code but source itself is usually 

much smaller so clangd spends most of its time compiling headers

● Precompiled headers (PCH) could help but cannot in this case because 

clangd uses them internally to speed up re-compilation when the user 

modifies a file

preamble

your actual 
cpp file

2mil LOC

~500 LOC

C++ file

#includes textually 
expanded



Use Implicit C++ Modules as PCH Substitution

● Solution: generate C++ implicit modulemap and inject into compilation database (CDB) for clangd

● Dramatically speeds up file reopening time in clangd

● On the example file with 2MLOC: 120+ sec. -> ~3s
● Overall median clangd document open time improvements: more than 3X in our case



Use Background Index for Prewarming Caches

● Naturally developers reopen only 20-30% of files in clangd so even if we speed up these files 20X, it 

won’t give a lot

● Cache prewarming is required

● Clangd compiles all files from CDB once for building background index, usually it doesn’t speedup 

file opening later because nothing is reused between these compilations

● With implicit modules in our setup, modules generated during background index are reusable on 

opening



Async Dynamic Indexing in Clangd

● Initial speedup of file reopening was “only” 2-3X

● Clangd builds dynamic index for the preamble and it causes visiting every node in AST and full 

deserialization that is slow

● Dynamic index can be built asynchronously in separate thread - see D148088 (implemented in 

collaboration with clangd community, special thanks to Kadir Cetinkaya and Sam McCall)
● Async dynamic index alone gives 20-30% document open time improvement even without implicit 

modules - already enabled in clang-17 by default and available to everybody

● With implicit modules speedup of document reopen is about 20X in P50

https://reviews.llvm.org/D148088


Next Steps

● Implement the preamble caching mechanism in clangd in upstream

● Produce preamble during background indexing

● Add options to control caching



Backup: Injected Compiler Options

● -fmodules - enable modules

● -fno-implicit-module-maps - don’t use implicit module maps because we resolve everything manually

● -fmodule-map-file - generated module map for all headers that exports everything

● -fmodules-cache-path - use separate path to the cache to control size and don’t interfere with build modules

● -fmodules-validate-input-files-content - check module invalidation by content hash instead of file timestamp

● -Wno-module-import-in-extern-c - help with extern “C” in headers

● -Wno-error - warnings in headers shouldn't break module compilation

● -Xclang -fallow-pcm-with-compiler-errors - produce serialized AST even in case of compilation errors in headers


